Motion Regularization for Matting Motion Blurred Objects
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Figure 1: Example showing our estimated motion and its ability to improve the alpha matte of motion blurred objects.

1 Introduction

We address the problem of matting motion blurred objects from a
single image. Existing single-image matting methods are designed
to extract static objects that have fractional pixel occupancy. This
arises because the real scene object has a finer resolution than the
discrete image pixel and therefore only occupies a portion of the
pixel. For a motion blurred object, however, fractional pixel occu-
pancy is attributed almost entirely to the object’s motion over the
exposure time. While conventional matting techniques can be used
to matte motion blurred object, they are not formulated in a manner
that considers the object’s local motion. Not surprisingly, these ex-
isting techniques often produce less than satisfactory results when
used to matte motion blurred objects, especially when not on solid
colored background.

In this work, we show how to obtain better alpha mattes by impos-
ing a simple regularization in the matting formulation to account
for the object’s motion. In addition, we introduce a method for es-
timating the local object motion based on local gradient statistics
from the original image. For completeness sake, we also discuss
how user markup can be used to denote the local direction in lieu
of motion estimation. As far as we are aware, this work serves as
the first attempt to explicitly modify the matting procedure to deal
with motion blurred objects.

2 Our Approach

Our approach works by first determining the local motion of the
foreground object. Instead of assigning a single motion vector per
pixel, we assign a weight, wg, for each of discrete angular direc-
tions d, where d € {0, %, %’T, cee %”, %r} These motion direction
weights can be estimated directly from the input image by examin-
ing local gradient properties in the blurred regions. In particular, we
can compute the local gradient distributions within a sliding win-
dow along the eight different radial directions. For each of these
eight directions we analyze the shape of the gradient distributions
by fitting a Laplacian to each directions distribution. The idea is
that there are fewer image gradients in the direction of the motion
due to blurring, thus distributions with more gradients about 0 rep-
resent the underlying local motion. The weight wq is computed as
the area under the estimated Lalpacian for each direction d. Simi-

*e-mail: linhait@comp.nus.edu.sg
fe-mail:yuwing @cs.kaist.ac.kr
te-mail:brown @comp.nus.edu.sg

Copyright is held by the author / owner(s).
SIGGRAPH 2010, Los Angeles, California, July 25 — 29, 2010.
ISBN 978-1-4503-0210-4/10/0007

lar analysis of the gradient distribution has been exploited for blur
detection [Levin 2006] and blur classification [Liu et al. 2008], but
not yet for estimating local blur direction.

We also allow the user to markup local motion by drawing scrib-
bles on top of the image in the direction of the motion. Based on
the user provided directions, we obtain a set of sparse local motion
directions along the scribbles. These sparse direction labels can be
propagated to other unmarked via a diffusion process. To compute
the discrete direction weights, the user supplied motion is projected
to the two closest of the eight discrete directions. For regions with
no motion, the user can simply draw a “dot” meaning that the regu-
larization weights at that local region is zero in all directions.

Based on the local motion, we add the following regularization term
to constrain each alpha value per-pixel, defined as:

Rpn(e) =Y wa(Vaa)" (Vaa), M

d=1

where V4« is the a-gradient in direction d, wq is the weight of
regularization for direction d. This constraint suppresses the matte
gradient according to the local motion direction. If an image region
does not contain motion blur, wy will be similar in all directions
and thus have little effect on the alpha matte’s solution.

We have compared the results obtained by adding our regular-
ization into two matting approaches: closed-form matting [Levin
et al. 2006] and robust-matting [Wang and Cohen 2007]. We found
that results are noticeably improved when using our regularization
scheme. Moreover, we found that our automatic motion estimation
is effective on the vast majority of input images. Future work is
to incorporate this same constraint into other conventional matting
procedures and to extend this to matting of video objects.
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